Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Med ; 27(1): 160, 2021 12 20.
Article in English | MEDLINE | ID: covidwho-1631040

ABSTRACT

COVID-19 clinical presentation differs considerably between individuals, ranging from asymptomatic, mild/moderate and severe disease which in some cases are fatal or result in long-term effects. Identifying immune mechanisms behind severe disease development informs screening strategies to predict who are at greater risk of developing life-threatening complications. However, to date clear prognostic indicators of individual risk of severe or long COVID remain elusive. Autoantibodies recognize a range of self-antigens and upon antigen recognition and binding, important processes involved in inflammation, pathogen defence and coagulation are modified. Recent studies report a significantly higher prevalence of autoantibodies that target immunomodulatory proteins including cytokines, chemokines, complement components, and cell surface proteins in COVID-19 patients experiencing severe disease compared to those who experience mild or asymptomatic infections. Here we discuss the diverse impacts of autoantibodies on immune processes and associations with severe COVID-19 disease.


Subject(s)
Autoantibodies/immunology , Autoantibodies/metabolism , COVID-19/complications , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Autoimmunity/physiology , COVID-19/metabolism , Humans , SARS-CoV-2/metabolism , Post-Acute COVID-19 Syndrome
2.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1631216

ABSTRACT

Angiotensin II receptor type 1 (AT1R) and endothelin-1 receptor type A (ETAR) are G-protein-coupled receptors (GPCRs) expressed on the surface of a great variety of cells: immune cells, vascular smooth cells, endothelial cells, and fibroblasts express ETAR and AT1R, which are activated by endothelin 1 (ET1) and angiotensin II (AngII), respectively. Certain autoantibodies are specific for these receptors and can regulate their function, thus being known as functional autoantibodies. The function of these antibodies is similar to that of natural ligands, and it involves not only vasoconstriction, but also the secretion of proinflammatory cytokines (such as interleukin-6 (IL6), IL8 and TNF-α), collagen production by fibroblasts, and reactive oxygen species (ROS) release by fibroblasts and neutrophils. The role of autoantibodies against AT1R and ETAR (AT1R-AAs and ETAR-AAs, respectively) is well described in the pathogenesis of many medical conditions (e.g., systemic sclerosis (SSc) and SSc-associated pulmonary hypertension, cystic fibrosis, and allograft dysfunction), but their implications in cardiovascular diseases are still unclear. This review summarizes the current evidence regarding the effects of AT1R-AAs and ETAR-AAs in cardiovascular pathologies, highlighting their roles in heart transplantation and mechanical circulatory support, preeclampsia, and acute coronary syndromes.


Subject(s)
Autoantibodies/metabolism , Cardiovascular Diseases/immunology , Receptor, Angiotensin, Type 1/immunology , Receptor, Endothelin A/immunology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Collagen/metabolism , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 1/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Cells ; 10(10)2021 09 26.
Article in English | MEDLINE | ID: covidwho-1438528

ABSTRACT

The coronavirus disease 2019 (COVID-19) is related to enhanced production of NETs, and autoimmune/autoinflammatory phenomena. We evaluated the proportion of low-density granulocytes (LDG) by flow cytometry, and their capacity to produce NETs was compared with that of conventional neutrophils. NETs and their protein cargo were quantified by confocal microscopy and ELISA. Antinuclear antibodies (ANA), anti-neutrophil cytoplasmic antibodies (ANCA) and the degradation capacity of NETs were addressed in serum. MILLIPLEX assay was used to assess the cytokine levels in macrophages' supernatant and serum. We found a higher proportion of LDG in severe and critical COVID-19 which correlated with severity and inflammatory markers. Severe/critical COVID-19 patients had higher plasmatic NE, LL-37 and HMGB1-DNA complexes, whilst ISG-15-DNA complexes were lower in severe patients. Sera from severe/critical COVID-19 patients had lower degradation capacity of NETs, which was reverted after adding hrDNase. Anti-NET antibodies were found in COVID-19, which correlated with ANA and ANCA positivity. NET stimuli enhanced the secretion of cytokines in macrophages. This study unveils the role of COVID-19 NETs as inducers of pro-inflammatory and autoimmune responses. The deficient degradation capacity of NETs may contribute to the accumulation of these structures and anti-NET antibodies are related to the presence of autoantibodies.


Subject(s)
Autoimmunity , COVID-19/blood , COVID-19/immunology , Extracellular Traps/immunology , Immunity, Humoral , Inflammation , Neutrophils/immunology , Antibodies, Antinuclear , Antimicrobial Cationic Peptides/blood , Autoantibodies/metabolism , Cross-Sectional Studies , Cytokines/metabolism , Cytokines/pharmacology , Flow Cytometry , Granulocytes/metabolism , HMGB1 Protein/blood , Healthy Volunteers , Humans , Microscopy, Confocal , Monocytes/cytology , Neutrophils/cytology , SARS-CoV-2 , Ubiquitins/pharmacology , Cathelicidins
5.
Scand J Immunol ; 94(5): e13098, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1394026

ABSTRACT

Costimulatory and coinhibitory mechanisms appear to be involved throughout immune responses to control their specificity and level. Many mechanisms operate; therefore, various theoretical models should be considered complementary rather than competing. One such coinhibitory model, pictured in 1971, involves the crosslinking of antigen receptors with inhibitory Fc receptors by antigen/antibody complexes. This model was prompted by observations that the Fc portion of antibody was required for potent suppression of immune responses by antibody. The signal via the antigen receptor wakes up T or B cells, providing specificity, while costimulators and coinhibitors stimulate or inhibit these awoken cells. The recent observations that administration of monoclonal anti-SARS-CoV-2 spike antibodies in early COVID-19 patients inhibits the induction of clinically damaging autoimmune antibodies suggest they may provide negative Fc signals that are blocked in COVID-19 patients. Furthermore, the reduced ability of SARS-CoV-2 antigen to localize to germinal centres in COVID-19 patients also suggests a block in binding of the Fc of antibody bound to antigen on FcγRIIb of follicular dendritic cells. The distinction between self and foreign is made not only at the beginning of immune responses but also throughout, and involves multiple mechanisms and models. There are past beginnings (history of models) and current and future beginnings for solving serious clinical problems (such as COVID-19) and different types of models used for understanding the complexities of fundamental immunology.


Subject(s)
COVID-19/immunology , Models, Immunological , Receptors, Fc/metabolism , SARS-CoV-2/physiology , Animals , Antibodies, Viral/metabolism , Antigen-Antibody Complex/metabolism , Autoantibodies/metabolism , Humans , Immunosuppression Therapy
7.
J Nucl Med ; 61(12): 1726-1729, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-993173

ABSTRACT

We report the case of a 72-y-old man with concomitant autoimmune encephalitis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The patient presented with subacute cerebellar syndrome and myoclonus several days after general infectious symptoms began. Methods: Clinical examination, CT, PET, MRI, and autoantibody testing were performed. Results: The oropharyngeal swab test was positive for SARS-CoV-2. The brain MRI results were normal. Cerebrospinal fluid testing showed normal cell counts, a negative result on reverse-transcription polymerase chain reaction testing, and no oligoclonal banding. Brain 18F-FDG PET showed diffuse cortical hypometabolism associated with putaminal and cerebellum hypermetabolism, compatible with encephalitis and especially cerebellitis. The immunologic study revealed high titers of IgG autoantibodies in serum and cerebrospinal fluid directed against the nuclei of Purkinje cells, striatal neurons, and hippocampal neurons. Whole-body 18F-FDG PET and CT scans did not show neoplasia. Treatment with steroids allowed a rapid improvement in symptoms. Conclusion: This clinical case argues for a possible relationship between SARS-CoV-2 infection and autoimmune encephalitis and for the use of 18F-FDG PET in such a context.


Subject(s)
Autoantibodies/metabolism , COVID-19/complications , COVID-19/diagnostic imaging , Encephalitis/complications , Fluorodeoxyglucose F18 , Hashimoto Disease/complications , Neurons/immunology , Positron-Emission Tomography , Aged , COVID-19/immunology , COVID-19/therapy , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL